Ayuda
Ir al contenido

Dialnet


High throughput virtual screening strategy to develop a potential treatment for bronchial asthma by targeting interleukin 13 cytokine signaling

  • Qin Ma [1] ; Huimin Tong [1] ; Junhu Jing [1]
    1. [1] Department of Respiratory and Critical Care, Tianjin Fourth Central Hospital, Hebei District, Tianjin, PR China
  • Localización: Allergologia et immunopathologia: International journal for clinical and investigate allergology and clinical immunology, ISSN-e 1578-1267, ISSN 0301-0546, Vol. 50, Nº. 6, 2022, págs. 22-31
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Chronic inflammation in the airway passage leads to the clinical syndrome of pediatric asthma. Allergic reactions caused by bacterial, viral, and fungal infection lead to the immune dis-balance which primes T helper cells (Th2), a specific cluster of differentiation 4 (CD4) T cell differentiation. This favors the Th2-specific response by activating the inter-leukin 4/interleukin 13 (IL-4/IL-13) cytokine signaling and further activates the secretion of immunoglobulin E (IgE). IL-13 develops bronchial asthma by elevating bronchial hyperresponsiveness and enables production of immunoglobulin M (IgM) and IgE. The present study aims to target IL-13 signaling using molecular docking and understanding molecular dynamic simulation (MDS) to propose a compelling candidate to treat asthma. We developed a library of available allergic drugs (n=20) and checked the binding affinity against IL-13 protein (3BPN.pdb) through molecular docking and confirmed the best pose binding energy of –3.84 and –3.71 for epinephrine and guaifenesin, respectively. Studying the interaction of hydrogen bonds and Van der Walls, it is estimated that electrostatic energy is sufficient to interact with the active site of the IL-13 and has shown to inhibit inflammatory signaling. These computational results confirm epinephrine and guaifenesin as potential ligands showing potential inhibitory activity for IL-13 signaling. This study also suggests the designing of a new ligand and screening of a large cohort of drugs, in the future, to predict the exact mechanism to control the critical feature of asthma.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno