Purpose Over the past two decades, online booking has become a predominant distribution channel of tourism products. As online sales have become more important, understanding booking conversion behavior remains a critical topic in the tourism industry. The purpose of this study is to model airline search and booking activities of anonymous visitors.
Design/methodology/approach This study proposes a stochastic approach to explicitly model dynamics of airline customers’ search, revisit and booking activities. A Markov chain model simultaneously captures transition probabilities and the timing of search, revisit and booking decisions. The suggested model is demonstrated on clickstream data from an airline booking website.
Findings Empirical results show that low prices (captured as discount rates) lead to not only booking propensities but also overall stickiness to a website, increasing search and revisit probabilities. From the decision timing of search and revisit activities, the author observes customers’ learning effect on browsing time and heterogeneous intentions of website visits.
Originality/value This study presents both theoretical and managerial implications of online search and booking behavior for airline and tourism marketing. The dynamic Markov chain model provides a systematic framework to predict online search, revisit and booking conversion and the time of the online activities.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados