Ayuda
Ir al contenido

Dialnet


Control of Industrial AGV Based on Reinforcement Learn

    1. [1] Universidad de Burgos

      Universidad de Burgos

      Burgos, España

    2. [2] Universidad Complutense de Madrid

      Universidad Complutense de Madrid

      Madrid, España

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío, Carlos Cambra Baseca, Daniel Urda Muñoz, Javier Sedano Franco, Héctor Quintián Pardo, Emilio Santiago Corchado Rodríguez, 2021, ISBN 978-3-030-57802-2, págs. 647-656
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Automatic Guided Vehicles (AGV) suffer degradation in their electromechanical components which affect the navigation performance over time. The use of intelligent control techniques can help to alleviate this issue. In this work a new approach to control an AGV based on reinforcement learning (RL) is proposed. The space of states is defined using the guiding error, and the set of control actions provides the reference for the velocities of each wheel. Two different reward strategies are implemented, and different updating policies are tested. Simulation results show how the RL controller is able to successfully track a complex trajectory. The controller has been compared with a PID obtaining better results.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno