Ayuda
Ir al contenido

Dialnet


Counting Livestock with Image Segmentation Neural Network

    1. [1] University of Pardubice

      University of Pardubice

      Chequia

  • Localización: 15th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2020): Burgos, Spain ; September 2020 / coord. por Álvaro Herrero Cosío, Carlos Cambra Baseca, Daniel Urda Muñoz, Javier Sedano Franco, Héctor Quintián Pardo, Emilio Santiago Corchado Rodríguez, 2021, ISBN 978-3-030-57802-2, págs. 237-244
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Livestock farming industries, as well as almost any industry, want more and more data about the operation of their business and activities in order to make the right decisions. However, especially when considering very large animal farms, the precise and up-to-date information about the position and numbers of the animals is rather difficult to obtain. In this contribution, a novel engineering approach to livestock positioning and counting, based on image processing, is proposed. The approach is composed of two parts. Namely, a fully convolutional neural network for input image transformation, and a locator for animal positioning. The transformation process is designed in order to transform the original RGB image into a gray-scale image, where animal positions are highlighted as gradient circles. The locator then detects the positions of the circles in order to provide the positions of animals. The presented approach provides a precision rate of 0.9842 and a recall rate of 0.9911 with the testing set, which is, in combination with a rather suitable computational complexity, a good premise for the future implementation under real conditions.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno