Ayuda
Ir al contenido

Dialnet


Topological Data Analysis and its usefulness for precision medicine studies

    1. [1] King's College London

      King's College London

      Reino Unido

    2. [2] University of Oxford

      University of Oxford

      Oxford District, Reino Unido

    3. [3] Ecole Centrale de Nantes

      Ecole Centrale de Nantes

      Arrondissement de Nantes, Francia

    4. [4] Inria Sophia-Antipolis, DataShape Team, Biot, Francia
    5. [5] Inria Saclay - Ile-de-France, Francia
  • Localización: Sort: Statistics and Operations Research Transactions, ISSN 1696-2281, Vol. 46, Nº. 1, 2022, págs. 115-136
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Precision medicine allows the extraction of information from complex datasets to facilitate clinical decision-making at the individual level. Topological Data Analysis (TDA) offers promising tools that complement current analytical methods in precision medicine studies. We introduce the fundamental concepts of the TDA corpus (the simplicial complex, the Mapper graph, the persistence diagram and persistence landscape). We show how these can be used to enhance the prediction of clinical outcomes and to identify novel subpopulations of interest, particularly applied to understand remission of depression in data from the GENDEP clinical trial.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno