Ayuda
Ir al contenido

Dialnet


Online fake job advertisement recognition and classification using machine learning

  • Autores: Gasim Othman Alandjani
  • Localización: 3 c TIC: cuadernos de desarrollo aplicados a las TIC, ISSN-e 2254-6529, Vol. 11, Nº. 1, 2022, págs. 251-267
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Machine learning algorithms handle numerous forms of data in real-world intelligent systems. With the advancement in technology and rigorous use of social media platforms, many job seekers and recruiters are actively working online. However, due to data and privacy breaches, one can become the target of perilous activates. The agencies and fraudsters entice the job seekers by using numerous methods, sources coming from virtual job-supplying websites. We aim to reduce the quantity of such fake and fraudulent attempts by providing predictions using Machine Learning. In our proposed approach, multiple classification models are used for better detection. This paper also presents different classifiers’ performance and compares results to enhance the results through various techniques for realistic results.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno