Ayuda
Ir al contenido

Dialnet


Resumen de On the permanent of a random symmetric matrix

Matthew Kwan, Lisa Sauermann

  • Let Mn denote a random symmetric n×n matrix, whose entries on and above the diagonal are i.i.d. Rademacher random variables (taking values ±1 with probability 1/2 each). Resolving a conjecture of Vu, we prove that the permanent of Mn has magnitude nn/2+o(n) with probability 1−o(1). Our result can also be extended to more general models of random matrices. In our proof, we build on and extend some techniques introduced by Tao and Vu, studying the evolution of permanents of submatrices in a random matrix process.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus