La enfermedad del coronavirus 2019 (COVID-19) es fatal y se está propagando rápidamente. La detección y el diagnóstico tempranos de la infección por COVID-19 evitarán la propagación rápida. Este estudio tiene como objetivo detectar COVID-19 automáticamente a partir del conjunto de datos de tomografía computarizada de tórax (TC). Se presentan los modelos estándar para la detección automática de COVID-19 utilizando imágenes de TC de tórax sin procesar. El estudio consta de arquitecturas de red neuronal convolucional (CNN), red Zeiler y Fergus (ZFNet) y red convolucional densa-121 (DenseNet121) de modelos de redes neuronales convolucionales profundas. Los modelos propuestos se presentan para proporcionar diagnósticos precisos para clasificación binaria. Los conjuntos de datos se obtuvieron de una base de datos pública. Este estudio retrospectivo incluyó 757 imágenes de TC de tórax (360 imágenes de TC de tórax COVID-19 confirmadas y 397 imágenes no COVID-19). Los algoritmos se codificaron utilizando el lenguaje de programación Python. Los parámetros de desempeño que se utilizaron fueron exactitud, precisión, recuperación, puntaje-F1 y ROC-AUC. Se presentan análisis comparativos entre los tres modelos considerando factores de hiperparámetros para encontrar el mejor modelo. Obtuvimos el mejor rendimiento, con exactitud del 94,7 %, recuperación del 90 %, precisión del 100 % y puntuación-F1 del 94,7 % del modelo de CNN. Como resultado, el algoritmo de CNN es más exacto y preciso que los modelos ZFNet y DenseNet121. Este estudio puede presentar un segundo punto de vista al personal médico.
The coronavirus disease 2019 (COVID-19) is fatal and spreading rapidly. Early detection and diagnosis of the COVID-19 infection will prevent rapid spread. This study aims to automatically detect COVID-19 through a chest computed tomography (CT) dataset. The standard models for automatic COVID-19 detection using raw chest CT images are presented. This study uses convolutional neural network (CNN), Zeiler and Fergus network (ZFNet), and dense convolutional network-121 (DenseNet121) architectures of deep convolutional neural network models. The proposed models are presented to provide accurate diagnosis for binary classification. The datasets were obtained from a public database. This retrospective study included 757 chest CT images (360 confirmed COVID-19 and 397 non-COVID-19 chest CT images). The algorithms were coded using the Python programming language. The performance metrics used were accuracy, precision, recall, F1-score, and ROC-AUC. Comparative analyses are presented between the three models by considering hyper-parameter factors to find the best model. We obtained the best performance, with an accuracy of 94,7%, a recall of 90%, a precision of 100%, and an F1-score of 94,7% from the CNN model. As a result, the CNN algorithm is more accurate and precise than the ZFNet and DenseNet121 models. This study can present a second point of view to medical staff.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados