Major developmental innovations have been associated with adaptive radiations that have allowed particular groups of organisms to occupy empty ecospace. Well-known developmental novelties associated with the conquest of new habitats include the evolution of the tetrapode limb, allowing the radiation of vertebrates into a terrestrial habitat, and formation of insect wings that permitted their dispersal into the air. However, an understanding of the evolutionary forces and molecular mechanisms behind developmental novelties still remains tenuous. A little-studied adaptive radiation in insects from the developmental perspective is the evolution of parasitism. The parasitic lifestyle has allowed parasitic insects to occupy a novel ecological niche where they have evolved a plethora of life history strategies and modes of embryogenesis, developing on or within the body of the host. One of the most striking adaptations to development within the body of the host includes polyembryonic development, where certain wasps form clonally up to 2000 embryos from a single egg. Taking advantage of well-established insect phylogeny, techniques developed in a model insect, the fruit fly, and a wealth of knowledge in comparative insect embryology, we are starting to tease apart the evolutionary events that have led to this novel mode of development in insects.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados