Temitope Gbolahan Jaiyeola, S. P. David, Oyeyemi O. Oyebola
A loop (Q, ·, \, /) is called a middle Bol loop (MBL) if it obeys the identity x(yz\x)=(x/z)(y\x). To every MBL corresponds a right Bol loop (RBL) and a left Bol loop (LBL). In this paper, some new algebraic properties of a middle Bol loop are established in a different style. Some new methods of constructing a MBL by using a non-abelian group, the holomorph of a right Bol loop and a ring are described. Some equivalent necessary and sufficient conditions for a right (left) Bol loop to be a middle Bol loop are established. A RBL (MBL, LBL, MBL) is shown to be a MBL (RBL, MBL, LBL) if and only if it is a Moufang loop.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados