Ayuda
Ir al contenido

Dialnet


Monthly Deforestation Monitoring with Sentinel-1 Multi-temporal Signatures and InSAR Coherences

  • Pulella, A. [1] ; Sica, F. [1] ; Rizzoli, P. [1]
    1. [1] German Aerospace Center (DLR)
  • Localización: Revista de teledetección: Revista de la Asociación Española de Teledetección, ISSN 1133-0953, Nº. Extra 56, 2020 (Ejemplar dedicado a: Applications of Copernicus Sentinel Satellites; V-XI), págs. 1-22
  • Idioma: inglés
  • Títulos paralelos:
    • Seguimiento de la deforestación mensual mediante firmas multitemporales Sentinel-1 y coherencias InSAR
  • Enlaces
  • Resumen
    • español

      Las series temporales interferométricas Sentinel-1 permiten la estimación precisa de la decorrelación temporal de la muestra y, por tanto, la recuperación de información acerca de la cobertura terrestre y su seguimiento temporal. Este artículo describe el desarrollo de un escenario de observación para el seguimiento de la deforestación mensual sobre la selva amazónica, basándose en el uso de datos radar para superar las limitaciones físicas propias de los sensores ópticos debido a la presencia de cobertura nubosa. En particular, se ha implementado un esquema de clasificación que explota las características multitemporales SAR, como la retrodispersión, texturas espaciales y parámetros interferométricos, para identificar áreas de bosque. Distintos mapas de bosque para meses consecutivos fueron generados y procesados para detectar fenómenos de deforestación y su evolución. Los resultados obtenidos fueron validados a partir de imágenes Sentinel-2 libres de nubes adquiridas sobre la misma zona y hora de observación.

    • English

      Sentinel-1 interferometric time-series allow for the accurate retrieval of the target’s temporal decorrelation and, therefore, the inversion of land cover information and its temporal monitoring. This paper describes the development of an observation scenario for monitoring monthly deforestation over the Amazon rainforest, which relies on the use of radar for overcoming the physical limitations of optical sensors caused by the presence of cloud coverage. Specifically, we implement a classification scheme that exploits multi-temporal SAR features, such as backscatter, spatial textures, and interferometric parameters, to map forested areas. Distinct forest maps are generated for consecutive months and further processed to detect deforestation phenomena and map clear-cuts evolution. The obtained results are validated by selecting cloud-free Sentinel-2 multispectral data on the selected area and acquired during the same observation time.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno