Ayuda
Ir al contenido

Dialnet


Pseudoholomorphic curves in S⁶ and S⁵

  • Autores: Jost Hinrich Eschenburg, Theodoros Vlachos
  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 60, Nº. 2, 2019, págs. 517-537
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The octonionic cross product on R7 induces a nearly K¨ahler structure on S 6 , the analogue of the K¨ahler structure of S 2 given by the usual (quaternionic) cross product on R3 . Pseudoholomorphic curves with respect to this structure are the analogue of meromorphic functions. They are (super-)conformal minimal immersions. We reprove a theorem of Hashimoto [Tokyo J. Math. 23 (2000), 137–159] giving an intrinsic characterization of pseudoholomorphic curves in S 6 and (beyond Hashimoto’s work) S 5 . Instead of the Maurer–Cartan equations we use an embedding theorem into homogeneous spaces (here: S 6 = G2/SU3) involving the canonical connection.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno