Ayuda
Ir al contenido

Dialnet


Resumen de Modulation of Countermovement Jump–Derived Markers of Neuromuscular Function With Concurrent vs. Single-Mode Resistance Training

Kristy J. Pattison, Eric J. Drinkwater, David J. Bishop, Nigel K. Stepto, Jackson J. Fyfe

  • This study assessed changes in countermovement jump (CMJ)-derived markers of neuromuscular function with concurrent training vs. resistance training (RT) alone and determined associations between changes in CMJ parameters and other neuromuscular adaptations (e.g., maximal strength gain). Twenty-three recreationally active men performed 8 weeks of RT alone (RT group, n = 8) or combined with either high-intensity interval training cycling (HIIT + RT group, n = 8) or moderate-intensity continuous cycling (MICT + RT group, n = 7). Maximal strength and CMJ performance were assessed before (PRE), after 4 weeks of training (MID), and >72 hours (maximal strength) or >5–7 days (CMJ performance) after (POST) the training intervention. Improvements in CMJ relative peak force from both PRE to MID and PRE to POST were attenuated for both HIIT + RT (effect size [ES]: −0.44; ±90% confidence limit, ±0.51 and ES: −0.72; ±0.61, respectively) and MICT + RT (ES: −0.74; ±0.49 and ES: −1.25; ±0.63, respectively). Compared with RT alone, the change in the flight time to contraction time ratio (FT:CT) was attenuated from PRE to MID for MICT + RT (ES: −0.38; ±0.42) and from PRE to POST for both MICT + RT (ES: −0.60; ±0.55) and HIIT + RT (ES: −0.75; ±0.30). PRE to POST changes in both CMJ relative peak force and flight time:contraction time (F:C) ratio were also associated with relative 1 repetition maximum leg press strength gain (r2 = 0.26 and 0.19, respectively). These findings highlight the utility of CMJ testing for monitoring interference to improvements in neuromuscular function with concurrent training.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus