Miguel Pérez del Castillo, Gastón Rial, Rafael Sotelo, Máximo Gurméndez
Recientemente los sitios web de los gobiernos en el mundo han sido objeto de ataques informáticos. Por ello urge una solución que asista a los analistas de ciberseguridad a detectar los incidentes con rapidez. Para optimizar el tiempo de detección en el proyecto se desarrolló un clasificador que filtre líneas de logs de servidores web en formato CLF (Combined Log Format) que indican comportamiento anómalo. Para ello, se codifican los logs de acceso en representación vectorial y luego se usa el algoritmo de aprendizaje automático K-NN ponderado (K vecinos más próximos) para filtrar los logs. Los datos de entrada fueron provistos por el CERTuy (Equipo de Respuesta ante Emergencias Informáticas) y el SOC (Centro de Operaciones de Seguridad). De las pruebas realizadas sobre el servicio de clasificación, se detectó el 82% de ofensas de ciberseguridad de un conjunto de datos asociado, se logró filtrar el 80% de logs que indican comportamiento normal y se disminuyó el tiempo de detección de logs que indican comportamiento anómalo de 13 horas a 15 minutos.
The number of attacks on government websites has escalated in the last years. In order to assist in the detection process conducted by cybersecurity analysts, this document suggests implementing machine learning techniques over web server access logs. The overall objective is to optimize the detection time using a customized classifier which selects traces corresponding to anomalous activity. Specifically, web server combined log format (CLF) access logs coded as real vectors are an input to a weighted K-NN nearest neighbors’ model. The methodology was tested on datasets and premises provided by the CERTuy (National Cybersecurity Event Response Team) and the SOC (Security Operations Center). According to evaluations 82% of cybersecurity offenses have been detected, 80% of normal behavior has been filtered and the reduction time has been reduced from 13 hours to 15 minutes.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados