Ayuda
Ir al contenido

Dialnet


Distributed least squares solver for network linear equations

  • Autores: Tao Yang, Jemin George, Jiahu Qin-, Xinlei Yi--, Junfeng Wu
  • Localización: Automatica: A journal of IFAC the International Federation of Automatic Control, ISSN 0005-1098, Nº. 113, 2020
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we study the problem of finding the least square solutions of over-determined linear algebraic equations over networks in a distributed manner. Each node has access to one of the linear equations and holds a dynamic state. We first propose a distributed least square solver over connected undirected interaction graphs and establish a necessary and sufficient on the step-size under which the algorithm exponentially converges to the least square solution. Next, we develop a distributed least square solver over strongly connected directed graphs and show that the proposed algorithm exponentially converges to the least square solution provided the step-size is sufficiently small. Moreover, we develop a finite-time least square solver by equipping the proposed algorithms with a finite-time decentralized computation mechanism. The theoretical findings are validated and illustrated by numerical simulation examples.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno