Ivan Pisa Dacosta, Ignacio Santín López, José López Vicario, Antoni Morell, Ramon Vilanova i Arbós
Wastewater Treatment Plants (WWTP) are industries devoted to process water coming from cities' sewer systems and to reduce their contamination. High-pollutant products are generated in the pollutant reduction processes. For this reason, certain limits are established and violations of them are translated into high economic punishments and environmental problems. In this paper data driven methods are performed to monitor the WWTP behaviour. The aim is to predict its effluent concentrations in order to reduce possible violations and their derived costs. To do so, an alarm generation system based on the application of Artificial Neural Networks (ANNs) is proposed. The proposed system shows a good prediction accuracy (errors around 5%) and a reduced miss-detection probability (30%).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados