Hamburg, Freie und Hansestadt, Alemania
The WASSA 2017 EmoInt shared task has the goal to predict emotion intensity val- ues of tweet messages. Given the text of a tweet and its emotion category (anger, joy, fear, and sadness), the participants were asked to build a system that assigns emotion intensity values. Emotion inten- sity estimation is a challenging problem given the short length of the tweets, the noisy structure of the text and the lack of annotated data. To solve this problem, we developed an ensemble of two neural models, processing input on the charac- ter. and word-level with a lexicon-driven system. The correlation scores across all four emotions are averaged to determine the bottom-line competition metric, and our system ranks place forth in full inten- sity range and third in 0.5-1 range of in- tensity among 23 systems at the time of writing (June 2017).
© 2001-2024 Fundación Dialnet · Todos los derechos reservados