Ayuda
Ir al contenido

Dialnet


LIPN-UAM at EmoInt-2017: Combination of Lexicon-based features and Sentence-level Vector Representations for Emotion Intensity Determination

    1. [1] Paris 13 University

      Paris 13 University

      Arrondissement de Saint-Denis, Francia

    2. [2] UAM Atzcapotzalco, Mexico
  • Localización: 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis WASSA 2017: Proceedings of the Workshop / Alexandra Balahur Dobrescu (ed. lit.), Saif M. Mohammad (ed. lit.), Erik van der Goot (ed. lit.), 2017, ISBN 978-1-945626-95-1, págs. 255-258
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper presents the combined LIPN- UAM participation in the WASSA 2017 Shared Task on Emotion Intensity. In particular, the paper provides some high- lights on the system that was presented to the shared task, partly based on the Tweetaneuse system used to participate in a French Sentiment Analysis task (DEFT2017). We combined lexicon-based features with sentence-level vector rep- resentations to obtain a random forest model.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno