Ayuda
Ir al contenido

Dialnet


Resumen de Outer membrane lipoprotein NlpI scaffolds peptidoglycan hydrolases within multi‐enzyme complexes in Escherichia coli

Manuel Banzhaf, Hamish C.L Yau, Jolanda Verheul, Adam Lodge, George Kritikos, André Mateus, Baptiste Cordier, Ann Kristin Hov, Frank Stein, Morgane Wartel, Manuel Pazos, Alexandra S Solovyova, Eefjan Breukink, Sven van Teeffelen, Mikhail M. Savitsk, Tanneke Den Blaauwen, Athanasios Typas, Waldemar Vollmer

  • The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh‐like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi‐enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi‐enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus