Ayuda
Ir al contenido

Dialnet


Left and right generalized Drazin invertible operators and local spectral theory

    1. [1] Ecole Nationale Polytechnique d’Oran-Maurice Audin.
    2. [2] Université des Sciences et de la Technologie d'Oran Mohamed-Boudiaf.
    3. [3] Ecole Supérieure en Génie électrique et energétique d’Oran.
  • Localización: Proyecciones: Journal of Mathematics, ISSN 0716-0917, ISSN-e 0717-6279, Vol. 38, Nº. 5, 2019, págs. 897-919
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we give some characterizations of the left and right generalized Drazin invertible bounded operators in Banach spaces by means of the single-valued extension property (SVEP). In particular, we show that a bounded operator is left (resp. right) generalized Drazin invertible if and only if admits a generalized Kato decomposition and has the SVEP at 0 (resp. it admits a generalized Kato decomposition and its adjoint has the SVEP at 0. In addition, we prove that both of the left and the right generalized Drazin operators are invariant under additive commuting finite rank perturbations. Furthermore, we investigate the transmission of some local spectral properties from a bounded linear operator, as the SVEP, Dunford property (C), and property (β), to its generalized Drazin inverse.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno