Ayuda
Ir al contenido

Dialnet


Rhizobacterium‐derived diacetyl modulates plant immunity in a phosphate‐dependent manner

    1. [1] Shanghai Chenshan Plant Science Research Center

      Shanghai Chenshan Plant Science Research Center

      China

    2. [2] Henan University

      Henan University

      China

    3. [3] Texas Tech University

      Texas Tech University

      Estados Unidos

    4. [4] 1 Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China
    5. [5] 1 Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China; 2 University of Chinese Academy of Sciences Beijing China
    6. [6] 1 Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China; 3 Department of Horticulture & Landscape Architecture Purdue University West Lafayette IN USA
    7. [7] 5 College of Grassland Agriculture Northwest A&F University Yangling China
    8. [8] 1 Shanghai Center for Plant Stress Biology, and CAS Center for Excellence in Molecular Plant Sciences Chinese Academy of Sciences Shanghai China; 6 State Key Laboratory of Crop Stress Adaptation and Improvement Henan University Kaifeng China
  • Localización: EMBO journal: European Molecular Biology Organization, ISSN 0261-4189, Vol. 39, Nº. 2, 2020
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Plants establish mutualistic associations with beneficial microbes while deploying the immune system to defend against pathogenic ones. Little is known about the interplay between mutualism and immunity and the mediator molecules enabling such crosstalk. Here, we show that plants respond differentially to a volatile bacterial compound through integral modulation of the immune system and the phosphate‐starvation response (PSR) system, resulting in either mutualism or immunity. We found that exposure of Arabidopsis thaliana to a known plant growth‐promoting rhizobacterium can unexpectedly have either beneficial or deleterious effects to plants. The beneficial‐to‐deleterious transition is dependent on availability of phosphate to the plants and is mediated by diacetyl, a bacterial volatile compound. Under phosphate‐sufficient conditions, diacetyl partially suppresses plant production of reactive oxygen species (ROS) and enhances symbiont colonization without compromising disease resistance. Under phosphate‐deficient conditions, diacetyl enhances phytohormone‐mediated immunity and consequently causes plant hyper‐sensitivity to phosphate deficiency. Therefore, diacetyl affects the type of relation between plant hosts and certain rhizobacteria in a way that depends on the plant's phosphate‐starvation response system and phytohormone‐mediated immunity.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno