Ayuda
Ir al contenido

Dialnet


Plug-in marginal estimation under a general regression model with missing responses and covariates

    1. [1] Universidad de Buenos Aires

      Universidad de Buenos Aires

      Argentina

    2. [2] Universidade de Santiago de Compostela

      Universidade de Santiago de Compostela

      Santiago de Compostela, España

    3. [3] Universidade de Vigo

      Universidade de Vigo

      Vigo, España

  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 28, Nº. 1, 2019, págs. 106-146
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we consider a general regression model where missing data occur in the response and in the covariates. Our aim is to estimate the marginal distribution function and a marginal functional, such as the mean, the median or any α -quantile of the response variable. A missing at random condition is assumed in order to prevent from bias in the estimation of the marginal measures under a non-ignorable missing mechanism. We give two different approaches for the estimation of the responses distribution function and of a given marginal functional, involving inverse probability weighting and the convolution of the distribution function of the observed residuals and that of the observed estimated regression function. Through a Monte Carlo study and two real data sets, we illustrate the behaviour of our proposals.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno