Mehdi Katranji, Sami Kraiem, Laurent Moalic, Guilhem Sanmarty, Ghazaleh Khodabandelou, Alexandre Caminada, Fouad Hadj Selem
Rapid urbanization has made the estimation of the human mobility flows a substantial task for transportation and urban planners. Worker and student mobility flows are among the most weekly regular displacements and consequently generate road congestion issues. With urge of demands on efficient transport planning policies, estimating their commuting facilitates the decision-making processes for local authorities. Worker and student censuses often contain home location, work places and educational institutions. This paper proposes a novel approach to estimate individuals origin–destination matrices from census datasets. We use a multi-task neural network to learn a generic model providing the spatio-temporal estimations of commuters dynamic mobility flows on daily basis from static censuses. Multi-task learning aims at leveraging functional information incorporated in multiple tasks, which allows ameliorating the generalization performance within all the tasks. We first aggregate individuals household travel surveys and census databases with working and studying trips. The model learns the temporal distribution of displacements from these static sources and then it is applied on scholar and worker mobility sources to predict the temporal characteristics of commuters' displacements (i.e. origin–destination matrices). Our method yields substantially more stable predictions in terms of accuracy and results in a significant error rate control in comparison to single task learning. [ABSTRACT FROM AUTHOR]
© 2001-2024 Fundación Dialnet · Todos los derechos reservados