Ayuda
Ir al contenido

Dialnet


Resumen de Modeling and simulation for mechanical behavior of modified biocomposite for scaffold application

Jenan S. Kashan, Saad M. Ali

  • español

    Los huesos en el cuerpo humano son un material compuesto natural que puede fracturarse debido a la tensión de impacto y cargas excesivas. Los huesos humanos pierden densidad y fuerza al aumentar la edad, por lo que se vuelven más susceptibles a las fracturas. En el presente trabajo, se ha estudiado el efecto de la adición de partículas de nanocerámica en las propiedades mecánicas para fabricar cuatro tipos de híbridos de biocompuestos de polieteretercetona reforzada con dióxido de titanio (TiO2) y alúmina (Al2O3). El objetivo de este estudio es desarrollar y mejorar las propiedades biomecánicas de los biomateriales fabricados para soportar las cargas de las actividades humanas diarias. El modelado y análisis de la biomecánica ósea del fémur se implementó utilizando los programas de software SOLIDWORKS 17.0 y de elementos finitos ANSYS 15.0. La técnica de metodología de superficie de respuesta (RSM) y el programa de software Design Expert 11.0 se utilizaron para mejorar y verificar los resultados de las propiedades de rendimiento biomecánico de los biocompuestos fabricados. Los principales resultados de la investigación actual deducen que el máximo equivalente (von-Misses) y las tensiones de cizallamiento en el hueso del fémur modelado son 120,93 y 60,80 MPa. La tensión para modelar el fabricado es 20 vol. % TiO2 / 5 vol. El material biocompuesto % Al2O3 / PEEK es más alto que el del hueso del fémur natural en un 10%. La energía de tensión máxima y la máxima tensión elástica equivalente se redujeron en un 20% y en un 26,09%, respectivamente. Los valores del factor de seguridad de estrés aumentaron en un 5,81%, y la vida de fatiga del biocompuesto fabricado es superior al 40,43 % en comparación con el material del hueso del fémur natural.

  • English

    Bones in the human body are a natural composite material that can be fractured due to impact stress and excessive loads. Human bones become less dense and strong when age increases, thereby they become more susceptible to fracture. The present work aims to study the effect of adding nano-ceramic particles on the mechanical properties to fabricate four types of hybrids of Titanium dioxide (TiO2) and Alumina (Al2O3) reinforced polyetheretherketone (PEEK) biocomposites. The objective of this study is to develop and improve the biomechanical properties of the fabricated biomaterials to withstand the loads of the daily human activities. Modeling and analysis of femur bone biomechanics were implemented by using the SOLIDWORKS 17.0 and the finite element ANSYS 15.0 software programs. The response surface methodology (RSM) technique and the Design Expert 11.0 software program were used to improve and verify the results of biomechanical performance of the fabricated biocomposites. From the current research results, it was deduce that the maximum equivalent (von- Misses) and shear stresses on the modeled femur bone are 120,93 and 60,80 MPa. The tensile for modeling the fabricated 20 vol. % TiO2/5 vol. % Al2O3/PEEK biocomposite material is higher than the one of natural femur bone by 10%. The maximum strain energy and the maximum equivalent elastic strain were reduced by 20% and 26,09 %, respectively. The stress safety factor values increased in 5,81%, and the fatigue life for the fabricated biocomposite is more than 40,43%, when compared with natural femur bone material.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus