Most pingos have grown in residual ponds left behind by rapid lake drainage through erosion of ice-wedge polygon systems. The field studies (1969-78) have involved precise levelling of numerous bench marks, extensive drilling, detailed temperature measurements, installation of water pressure transducers below permafrost and water (ice) quality, soil, and many other analyses. Precise surveys have been carried out on 17 pingos for periods ranging from 3 to 9 years. The field results show that permafrost aggradation in saturated lake bottom sediments creates the high pore water pressures necessary for pingo growth. The subpermafrost water pressures frequently approach that of the total litho-static pressure of permafrost surrounding a pingo. The water pressure is often great enough to lift a pingo and intrude a sub-pingo water lens beneath it. The basal diameter of a pingo is established in early youth after which time the pingo tends to grow higher, rather than both higher and wider. The shutoff direction of freezing is from periphery to center. When growing pingos have both through going taliks and also permeable sediments at depth, water may be expelled downwards by pore water expulsion from freezing and consolidation from self loading on saturated sediments. Pingos can rupture from bursting of the sub-pingo water lens. Otherwise, pingo failure is at the top and periphery. Hydraulic fracturing is probably important in some pingo failures. Water loss from sub-pingo water lenses causes subsidence with the subsidence pattern being the mirror image of the growth pattern; i.e. greatest subsidence at the top. Small peripheral bulges may result from subsidence. Old pingos collapse from exposure of the ice core to melting by overburden rupture, by mass wasting, and by permafrost creep of the sides.
La plupart des pingos de cette région se sont développés sur d’anciens fonds de lacs dont l’assèchement rapide a été causé par l’érosion de réseaux polygonaux à fentes de gel. Les levés de terrain (1969-1978) comprenaient le nivellement de nombreux points de repères, un forage intensif, des mesures thermiques, l’installation de transducteurs pour mesurer la pression hydraulique sous le pergélisol et des analyses diverses de l’eau (glace) du sol, etc. On en conclut que l’expansion du pergélisol dans des sédiments saturés de fonds de lacs provoque une accumulation de pression de l’eau d'infiltration suffisante pour permettre la croissance d’un pingo. Il arrive fréquemment que la pression hydraulique sous le pingo se rapproche de la pression lithostatique de la zone périphérique du pingo. La pression hydraulique parvient souvent à soulever un pingo et à introduire sous celui-ci une lentille de glace. Le diamètre de base maximal du pingo est atteint dès les premiers stades de sa formation; par la suite, le pingo tend plutôt à croître en hauteur. L’arrêt de la gélisolation se fait à partir de la périphérie pour se répercuter ensuite vers le centre. Quand un pingo évolue dans des sédiments perméables et sur un talik situé en profondeur, l’eau d’infiltration peut être expulsée vers le bas, faisant suite à l’engel et à la consolidation des sédiments saturés. Après l’éclatement de la lentille d’eau située sous le pingo, celui-ci peut se déchirer. Autrement, les brisures apparaissent au sommet ou sur les versants. L’expulsion de l’eau de la lentille occasionne la dégradation du pingo, qui se manifeste d’abord au sommet. Les vieux pingos s’affaissent suite à la fonte de leur coeur de glace mis au jour, de la gélifluxion et de la reptation sur les versants.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados