Ayuda
Ir al contenido

Dialnet


Resumen de Improving multipliers and zero sets in \mathcal {Q}_K spaces

Guanlong Bao, Zengjian Lou, Ruishen Qian, Hasi Wulan

  • Let X and Y be two spaces of analytic functions in the unit disk \mathbb {D} with X\subseteq Y. An inner function \theta is said to be (X, Y)-improving if f\theta \in X whenever f\in X and f\theta \in Y. Under mild conditions on the weight function K, we prove that inner functions in \mathcal {Q}_{K} are precisely the ones which are (\mathcal {Q}_K, BMOA)-improving and (\mathcal {Q}_K, \mathcal {B})-improving. Meanwhile, the zero sets in \mathcal {Q}_K spaces are determined in terms of Carleson–Newman sequences.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus