Ayuda
Ir al contenido

Dialnet


Resumen de Solvability of commutative power-associative nilalgebras of nilindex 4 and dimension

Luisa Elgueta, Avelino Suazo

  • Let A be a commutative power-associative nilalgebra. In this paper we prove that when A (of characteristic ≠2) is of dimension ≤ 8 and x⁴ = 0 for all x ∈ A, then ((A²)²)² = 0. That is, A is solvable. We conclude that if A is of dimension ≤ 7 over a field of characteristic ≠2, 3 and 5, then A is solvable.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus