Ayuda
Ir al contenido

Dialnet


Particle Gaussian mixture filters-I

  • Autores: Dilshad Raihan, Suman Chakraborty
  • Localización: Automatica: A journal of IFAC the International Federation of Automatic Control, ISSN 0005-1098, Nº. 98, 2018, págs. 331-340
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, we propose a particle based Gaussian mixture filtering approach for nonlinear estimation that is free of the particle depletion problem inherent to most particle filters. We employ an ensemble of possible state realizations for the propagation of state probability density. A Gaussian mixture model (GMM) of the propagated uncertainty is then recovered by clustering the ensemble. The posterior density is obtained subsequently through a Kalman measurement update of the mixture modes. We prove the convergence in probability of the resultant density to the true filter density assuming exponential forgetting of initial conditions. The performance of the proposed filtering approach is demonstrated through several test cases and is extensively compared to other nonlinear filters.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno