Ayuda
Ir al contenido

Dialnet


Characterization of steryl glycosides in marine microalgae by gas chromatography-triple quadrupole mass spectrometry (GC-QQQ-MS).

  • Autores: Shanshan Yu, Yufan Zhang, Yun Ran, Wenyi Lai, Zhaoshou Ran, Jilin Xu, Chengxu Zhou, Xiaojun Yan
  • Localización: Journal of the science of food and agriculture, ISSN 0022-5142, Vol. 98, Nº 4, 2018, págs. 1574-1583
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Steryl glycosides (SGs) are sterol conjugates found in various plants, especially in those making up human diets. It has been demonstrated that SGs have potential health benefits, and they could be used as food supplements in a variety of food matrixes. Marine microalgae are a potential resource for human food and ingredients. In this study, gas chromatography-triple quadrupole mass spectrometry (GC-QQQ-MS) was used to characterize unknown SGs in eight microalgae belonging to different classes (Isochrysis galbana 3011, Pavlova viridis, Platymonas helgolandica, Conticribra weissflogii, Thalassiosira pseudonana, Nitzschia closterium, Gymnodinium sp., and Karlodinum veneficum).; Results: The SGs were first extracted from lyophilized algae with chloroform-methanol, purified by solid-phase extraction and analyzed as trimethylsilyl derivatives. Nine SGs have been identified. In particular, new SGs like occelasteryl glycoside and stellasteryl glycoside were found in Gymnodinium sp., 24-methylene cholesteryl glycoside was detected in P. helgolandica, and 4,24-dimethylcholestan-3-yl glycoside was identified as the main constituent of microalga K. veneficum. The results also showed that the compositions of SGs in different microalgae varied, with a range of 5.234 to 0.036 g kg-1 , and microalga P. viridis contained the most abundant SGs.; Conclusion: GC-QQQ-MS is a powerful tool to detect SGs with different structures from a variety of microalgae. The compositions of SGs in different microalgae varied greatly. Microalgae are a good source of highly valued SGs. © 2017 Society of Chemical Industry.; © 2017 Society of Chemical Industry.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno