Ayuda
Ir al contenido

Dialnet


Distributed sampled-data control of Kuramoto–Sivashinsky equation

  • Autores: Wen- Kang, Emilia Fridman
  • Localización: Automatica: A journal of IFAC the International Federation of Automatic Control, ISSN 0005-1098, Nº. 95, 2018, págs. 514-524
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The paper is devoted to distributed sampled-data control of nonlinear PDE system governed by 1-D Kuramoto–Sivashinsky equation. It is assumed that N sensors provide sampled in time spatially distributed (either point or averaged) measurements of the state over N sampling spatial intervals. Locally stabilizing sampled-data controllers are designed that are applied through distributed in space shape functions and zero-order hold devices. Given upper bounds on the sampling intervals in time and in space, sufficient conditions ensuring regional exponential stability of the closed-loop system are established in terms of Linear Matrix Inequalities (LMIs) by using the time-delay approach to sampled-data control and Lyapunov–Krasovskii method. As it happened in the case of diffusion equation, the descriptor method appeared to be an efficient tool for the stability analysis of the sampled-data Kuramoto–Sivashinsky equation. An estimate on the domain of attraction is also given. A numerical example demonstrates the efficiency of the results.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno