Ayuda
Ir al contenido

Dialnet


Top ten errors of statistical analysis in observational studies for cancer research

    1. [1] Hospital Universitario Central de Asturias

      Hospital Universitario Central de Asturias

      Oviedo, España

    2. [2] Universidad de Oviedo

      Universidad de Oviedo

      Oviedo, España

    3. [3] Clínica Universitaria de Navarra

      Clínica Universitaria de Navarra

      Pamplona, España

    4. [4] Hospital Universitario La Paz

      Hospital Universitario La Paz

      Madrid, España

    5. [5] Catholic University of Murcia (UCAM)
    6. [6] Hospital Universitario Morales Meseguer
  • Localización: Clinical & translational oncology, ISSN 1699-048X, Vol. 20, Nº. 8, 2018, págs. 954-965
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Observational studies using registry data make it possible to compile quality information and can surpass clinical trials in some contexts. However, data heterogeneity, analytical complexity, and the diversity of aspects to be taken into account when interpreting results makes it easy for mistakes to be made and calls for mastery of statistical methodology. Some questionable research practices that include poor analytical data management are responsible for the low reproducibility of some results; yet, there is a paucity of information in the literature regarding specific statistical pitfalls of cancer studies. In addition to proposing how to avoid or solve them, this article seeks to expose ten common problematic situations in the analysis of cancer registries: convenience, dichotomization, stratification, regression to the mean, impact of sample size, competing risks, immortal time and survivor bias, management of missing values, and data dredging.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno