Ayuda
Ir al contenido

Dialnet


Discovering outlying aspects in large datasets

  • Autores: Nguyen Vinh, Jeffrey Chan, Simone Romano, James Bailey, Christopher Leckie, Kotagiri Ramamohanarao, Jian Pei
  • Localización: Data mining and knowledge discovery, ISSN 1384-5810, Vol. 30, Nº 6, 2016, págs. 1520-1555
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We address the problem of outlying aspects mining: given a query object and a reference multidimensional data set, how can we discover what aspects (i.e., subsets of features or subspaces) make the query object most outlying? Outlying aspects mining can be used to explain any data point of interest, which itself might be an inlier or outlier. In this paper, we investigate several open challenges faced by existing outlying aspects mining techniques and propose novel solutions, including (a) how to design effective scoring functions that are unbiased with respect to dimensionality and yet being computationally efficient, and (b) how to efficiently search through the exponentially large search space of all possible subspaces. We formalize the concept of dimensionality unbiasedness, a desirable property of outlyingness measures. We then characterize existing scoring measures as well as our novel proposed ones in terms of efficiency, dimensionality unbiasedness and interpretability. Finally, we evaluate the effectiveness of different methods for outlying aspects discovery and demonstrate the utility of our proposed approach on both large real and synthetic data sets.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno