Ayuda
Ir al contenido

Dialnet


Resumen de Knowledge base completion by learning pairwise-interaction differentiated embeddings

Yu Zhao, Sheng Gao, Patrick Gallinari, Jun Guo

  • A knowledge base of triples like (subject entity, predicate relation,object entity)is a very important resource for knowledge management. It is very useful for human-like reasoning, query expansion, question answering (Siri) and other related AI tasks. However, such a knowledge base often suffers from incompleteness due to a large volume of increasing knowledge in the real world and a lack of reasoning capability. In this paper, we propose a Pairwise-interaction Differentiated Embeddings model to embed entities and relations in the knowledge base to low dimensional vector representations and then predict the possible truth of additional facts to extend the knowledge base. In addition, we present a probability-based objective function to improve the model optimization. Finally, we evaluate the model by considering the problem of computing how likely the additional triple is true for the task of knowledge base completion. Experiments on WordNetand Freebaseshow the excellent performance of our model and algorithm.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus