Ayuda
Ir al contenido

Dialnet


Multidimensional Feature Selection and Interaction Mining with Decision Tree Based Ensemble Methods

  • Autores: Lukasz Krol, Joanna Polanska
  • Localización: 11th International Conference on Practical Applications of Computational Biology & Bioinformatics / Florentino Fernández Riverola (ed. lit.), 2017, ISBN 978-3-319-60815-0, págs. 118-125
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper demonstrates capability of detecting strong synthetic benchmark feature interactions in a set of mixed categorical and continuous variables using a modified version of Monte Carlo Feature Selection algorithm.

      MCFS’s original way of detecting feature interactions relying on the analysis of structure of trained decision trees is compared with our modified approach consisting of a series of variable permutations combined with a decomposition of feature total effect to main effect and interaction effects. A comparison with unmodified MCFS, which by default handles only classification problems using C4.5 decision trees, shows that the new approach is slightly more robust. Furthermore, the decomposition approach is flexible by allowing to plug in different types of models to MCFS. This opens a way to handle high-throughput supervised feature selection and interaction mining problems for classification, regression and censored survival decision vector.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno