Ayuda
Ir al contenido

Dialnet


Blowup Points and Baby Mandelbrot Sets for a Family of Singularly Perturbed Rational Maps

    1. [1] University of Memphis

      University of Memphis

      Estados Unidos

    2. [2] Freed–Hardeman University

      Freed–Hardeman University

      Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 16, Nº 1, 2017, págs. 31-52
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the dynamics of the family of rational maps of the form fd,λ(z)=λ(z+1zd−1),d≥3,λ∈C∖{0}.

      Among other things, we show that the parameter planes for these maps contain infinitely many copies of the Mandelbrot set as well as infinitely many “blowup points”, i.e., parameters for which the critical orbits map to ∞ , so the Julia set is the entire sphere. Our efforts are aided by the useful observation that for fixed d≥3 , this family is conformally conjugate on the entire Riemann sphere to the family of relaxed Newton maps for pd(z)=zd−1 . The conjugacy allows us to move from one family to the other in order to find simpler proofs of our results, as well as establishing a dictionary of results from one family to the other.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno