Trypanosoma cruzi, the causal agent of Chagas' disease, is a flagellated protozoan parasite with a complex life cycle that involves infecting an insect and a mammalian host. Several environmental stresses occur during its life cycle, such as heat, reactive oxygen species, and osmolarity changes, and the parasite has evolved a variety of stress responses to cope with these challenges. The stress responses range from synthesis of several proteins and small molecules to modulation of the activity of organelles, and they are essential for the parasite's viability and survival in both hosts. Here we review the components and operation of T. cruzi's stress response with emphasis on its relevance to the parasite's biology and to Chagas' disease transmission, pathogenesis and treatment.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados