Ayuda
Ir al contenido

Dialnet


Drive optimization of a pulsatile total artificial heart

    1. [1] Rheinisch-Westfälische Technische Hochschule Aachen University

      Rheinisch-Westfälische Technische Hochschule Aachen University

      Städteregion Aachen, Alemania

  • Localización: Compel: International journal for computation and mathematics in electrical and electronic engineering, ISSN 0332-1649, Vol. 33, Nº 3 (Special Issue: OIPE 2012), 2014, págs. 941-952
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Purpose – Total artificial hearts (TAHs) are required for the treatment of cardiovascular diseases. In order to replace the native heart a TAH must provide a sufficient perfusion of the human body, prevent blood damage and meet the implantation constraints. Until today there is no TAH on the market which meets all constraints. So the purpose of this paper is to design a drive in such a way that the operated TAH meets all predefined constraints.

      Design/methodology/approach – The drive is designed in terms of weight and electric losses. In setting up a cost function containing those constraints, the drive design can be included in a optimization process. When reaching the global minimum of the cost function the optimum drive design is found. In this paper the optimization methods manual parameter variation and differential evolution are applied.

      Findings – At the end of the optimization process the drive's weight amounts to 460 g and its mean losses sum up to 10 W. This design meets all predefined constraints. Further it is proposed to start the optimization process with a parameter variation to reduce the amount of optimization parameters for the time consuming differential evolution algorithm.

      Practical implications – This TAH has the potential to provide a therapy for all patients suffering from cardiovascular diseases as it is independent of donor organs.

      Originality/value – The optimization-based design process yields an optimum drive for a TAH in terms of weight and electrical losses. In this way a TAH is developed which meets all implantation constraints and provides sufficient perfusion of the human body at the same time.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno