Ayuda
Ir al contenido

Dialnet


Resumen de Modified Hilbert fractal geometry, multi‐service, miniaturized patch antenna for UWB wireless communication

Ademola O. Kaka, Mehmet Toycan, Vali Bashiry, Stuart D. Walker

  • Purpose – The purpose of this paper is to describe a modified Hilbert‐based fractal antenna for ultra wideband (UWB) wireless applications. Simulation results show excellent multi‐band characteristics for UWB wireless applications.

    Design/methodology/approach – A Hilbert curve‐based fractal is optimised for self‐replicating, space‐filling and self‐avoiding properties. In the proposed design, the Hilbert curve is applied to a rectangle as an initial iteration and maintained for the later iterations. Additionally, a Yagi‐like strip is removed from the second iteration of the Hilbert patch and a hexagonal portion is removed from the substrate to achieve good optimization. The antenna feed is created through a micro‐strip line with a feeding section. Finally, a partial ground plane technique is used for improved impedance matching characteristics. A finite element method (FEM) is used to simulate the modified Hilbert model with commercially available Ansoft HFSS software.

    Findings – The proposed antenna is miniaturized (39 mm length×30 mm width) and has multi‐band characteristics. The simulation results show that the antenna has a reflection coefficient characteristic of <−10 dB, a linear phase reflection coefficient, better than 65 percent radiation efficiency, 2.2‐4 dBi antenna gain and nearly omni‐directional radiation pattern properties over the UWB bandwidth (3.1‐10.6 GHz).

    Originality/value – The antenna shows promising characteristics for the full 7.5 GHz UWB bandwidth. In addition, the performance is achieved by using laceration techniques on the Hilbert patch and substrate, respectively. A partial ground plane ensures impedance matching of 50 over full UWB bandwidth. The simulation analysis of the modified Hilbert fractal antenna design constitutes the main contribution of the paper.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus