Ayuda
Ir al contenido

Dialnet


Resumen de 3D harmonic model of the end region for turbogenerators

Jakub Andrzejewski, Raphaël Romary

  • Purpose – The large size of models and long computing time prevent the creation of full‐scale, three‐dimensional models of end region of turbogenerators. Only exact three‐dimensional model can illustrate complex phenomena of end region losses. Also some methods of decreasing such losses cannot be simulated in two‐dimensional models. The purpose of this paper is to focus on a method of creating three‐dimensional models of turbogenerators' end regions for calculations of eddy current losses.

    Design/methodology/approach – Time‐stepping is the most expensive part of computation. A harmonic model would be free from that disadvantage and it can provide a tool to make an accurate, fully three‐dimensional model of a steady state for different loads and provide results in a reasonable time.

    Findings – The research focuses on the method of creating three‐dimensional models of turbogenerators end region for calculations of eddy current losses. By using two‐dimensional, time‐stepping models and empirical loss functions for a main flux and three‐dimensional models for eddy current losses from a perpendicular flux of an end connections, it is found that fast analysis of that complex part of a machine can be achieved.

    Originality/value – The approach proposed in the paper is a universal and novel method of calculation losses of turbogenerators' end regions. Combining two‐dimensional and three‐dimensional models provides advantages of both known methods: fast computation time from simplified models and good representation of complex geometry of a machine.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus