Ayuda
Ir al contenido

Dialnet


Resumen de Stochastic dynamic optimization for wind energy converters

Bingchang Ni, Constantinos Sourkounis

  • Purpose – Wind energy plays a very important role in the future electrical power supply. With growing shares, the focus of the plant control will have to shift from maximum power yield to grid friendly aspects, like stable power output despite fluctuating wind power. The purpose of this paper is to design a new operation management for wind energy converters that combines high‐energy yield, grid friendly power output characteristics and the ability to adapt to changing wind conditions.

    Design/methodology/approach – An operation control based on stochastic dynamic optimization was developed for the special demands of variable speed wind energy converters. The task of the operation control is to set the appliance to the optimal operation point, following the above‐mentioned goals by adapting the control pattern to changing wind conditions.

    Findings – It is shown that the novel control concept, the iterative self‐adapting system management with stochastic dynamic optimization, is able to control wind energy converters in such a way that the effect of the stochastic fluctuating wind energy supply on the output power fluctuation is smoothed while maintaining a high‐energy yield.

    Originality/value – This non‐linear stochastic dynamic optimization structure has two special characteristics, first is the iterative self‐adaptation, and second is the optimization for an infinite process, while the optimization criteria are high‐power yield and low‐power output fluctuations. This will be of great value for further increase of wind energy converters in the electrical power supply.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus