Ayuda
Ir al contenido

Dialnet


The effects of proteasomal inhibition on synaptic proteostasis

    1. [1] 1 The Rappaport Faculty of Medicine and Research Institute Haifa Israel; 2 Network Biology Research Laboratories Technion – Israel Institute of Technology Haifa Israel
    2. [2] 3 Smoler Proteomics Center Faculty of Biology Technion Haifa Israel
  • Localización: EMBO journal: European Molecular Biology Organization, ISSN 0261-4189, Vol. 35, Nº. 20, 2016, págs. 2238-2262
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin‐proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno