Ayuda
Ir al contenido

Dialnet


Intrinsically disordered proteins drive emergence and inheritance of biological traits

    1. [1] Stanford University

      Stanford University

      Estados Unidos

    2. [2] Whitehead Institute for Biomedical Research
  • Localización: Cell, ISSN 0092-8674, Vol. 167, Nº. 2, 2016, págs. 369-381
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Prions are a paradigm-shifting mechanism of inheritance in which phenotypes are encoded by self-templating protein conformations rather than nucleic acids. Here, we examine the breadth of protein-based inheritance across the yeast proteome by assessing the ability of nearly every open reading frame (ORF; ∼5,300 ORFs) to induce heritable traits. Transient overexpression of nearly 50 proteins created traits that remained heritable long after their expression returned to normal. These traits were beneficial, had prion-like patterns of inheritance, were common in wild yeasts, and could be transmitted to naive cells with protein alone. Most inducing proteins were not known prions and did not form amyloid. Instead, they are highly enriched in nucleic acid binding proteins with large intrinsically disordered domains that have been widely conserved across evolution. Thus, our data establish a common type of protein-based inheritance through which intrinsically disordered proteins can drive the emergence of new traits and adaptive opportunities.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno