Ayuda
Ir al contenido

Dialnet


Text Categorization Using a New Text Association Rule-Based Classifier

  • Autores: Supaporn Buddeewong, Worapoj Kreesurakej
  • Localización: International journal of the computer, the internet and management, ISSN 0858-7027, Vol. 13, Nº. 2 (OCT), 2005 (Ejemplar dedicado a: Suplemento 2: eIndustry 2005. Proceedings of the International Conference on Computer and Industrial Management), págs. 8-8
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper proposes a new association rule-based Classifier algorithm to improve the prediction accuracy of Association Rule-based Classifier By Categories (ARC-BC) algorithm. Unlike the previous algorithms, the proposed association rule generation algorithm constructs two types of frequent itemsets. The first frequent itemsets, i.e. Lk, contain all term that have no an overlap with other categories. The second frequent itemsets, i.e. OLk, contain all features that have an overlap with other categories. In addition, this paper also proposes a new join operation for the second frequent itemsets. The experimental results are shown a good performance of the proposed classifier.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno