City of Detroit, Estados Unidos
Targeting essential cellular pathways that determine neuronal and vascular survival can foster a successful therapeutic platform for the treatment of a wide variety of degenerative disorders in the central nervous system. In particular, oxidative cellular injury can precipitate several nervous system disorders that may either be acute in nature, such as during cerebral ischemia, or more progressive and chronic, such as during Alzheimer disease. Apoptotic injury in the brain proceeds through two distinct pathways that ultimately result in the early externalization of membrane phosphatidylserine (PS) residues and the late induction of genomic DNA fragmentation. Degradation of DNA may acutely impact cellular survival, while the exposure of membrane PS residues can lead to microglial phagocytosis of viable cells, cellular inflammation, and thrombosis in the vascular system. Through either independent or common pathways, the Wingless/Wnt pathway and the serine-threonine kinase Akt serve central roles in the maintenance of cellular integrity and the prevention of the phagocytic disposal of cells "tagged" by PS exposure. By selectively governing the activity of specific downstream substrates that include GSK-3ß, Bad, and ß-catenin, Wnt and Akt serve to foster neuronal and vascular survival and block the induction of programmed cell death. Novel to Akt is its capacity to protect cells from phagocytosis through the direct modulation of membrane PS exposure. Intimately linked to the activation of Wnt signaling and Akt is the maintenance of mitochondrial membrane potential and the regulation of Bcl-xL, mitochondrial energy metabolism, and cytochrome c release that can lead to specific cysteine protease activation.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados