Modern high-pressure experimental techniques have enabled us to achieve the pressure and temperature at the center of Earth (about 360 GPa and 6000 K) in laboratories. However, studies of rheological properties of minerals under controlled strain rate (creep experiments) have been limited to the pressure equivalent to that in Earth's transition zone, a depth only about one-tenth of Earth's radius. Determinations of rheological laws that govern the flows and viscosities of minerals in Earth's deep mantle have been far beyond our reach. In the absence of such critical data, the nature of mantle dynamics—such as whether the convection involves the entire lower mantle, yielding a chemically homogeneous deep mantle—remains controversial. Discovery of the breakdown of ringwoodite into the denser bridgmanite and magnesiowüstite phases at 24 GPa (1) removed the need for a major chemical discontinuity in Earth inferred from observations of a strong seismic reflector at 660 km depth. On page 144 of this issue, Girard et al. (2) report on the detailed rheological nature of this bridgmanite plus magnesiowüstite mineral aggregate, shedding more light on the mantle convection. The integration of brilliant synchrotron radiations and rotating apposed anvils enables creep experiments for large strain at pressures equivalent to that in Earth's lower mantle.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados