Ayuda
Ir al contenido

Dialnet


Arp2/3 complex interactions and actin network turnover in lamellipodia

    1. [1] Helmholtz Centre for Infection Research

      Helmholtz Centre for Infection Research

      Kreisfreie Stadt Braunschweig, Alemania

    2. [2] Hannover Medical School

      Hannover Medical School

      Region Hannover, Alemania

    3. [3] King's College London

      King's College London

      Reino Unido

    4. [4] Institute of Molecular Biotechnology

      Institute of Molecular Biotechnology

      Innere Stadt, Austria

    5. [5] Department of Anatomy and Embryology, Ruhr University, Bochum, Germany
  • Localización: EMBO journal: European Molecular Biology Organization, ISSN 0261-4189, Vol. 27, Nº. 7, 2008, págs. 982-992
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Cell migration is initiated by lamellipodia—membrane-enclosed sheets of cytoplasm containing densely packed actin filament networks. Although the molecular details of network turnover remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 complex and its activator WAVE complex. Here, we combine fluorescence recovery after photobleaching (FRAP) of different lamellipodial components with a new method of data analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at sites coincident with WAVE complex accumulation. Capping protein likewise showed a turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, cortactin—another prominent Arp2/3 complex regulator—and ADF/cofilin—previously implicated in driving both filament nucleation and disassembly—were rapidly exchanged throughout the lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and cofilin. Network turnover is additionally regulated by the spatially segregated activities of capping protein at the tip and cofilin throughout the mesh.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno