Ayuda
Ir al contenido

Dialnet


Resumen de Effect of Prehospital Induction of Mild Hypothermia on Survival and Neurological Status Among Adults With Cardiac Arrest A Randomized Clinical Trial

Francis Kim, Graham Nichol, Charles Maynard, Al Hallstrom, Peter J. Kudenchuk

  • Importance Hospital cooling improves outcome after cardiac arrest, but prehospital cooling immediately after return of spontaneous circulation may result in better outcomes.

    Objective To determine whether prehospital cooling improves outcomes after resuscitation from cardiac arrest in patients with ventricular fibrillation (VF) and without VF.

    Design, Setting, and Participants A randomized clinical trial that assigned adults with prehospital cardiac arrest to standard care with or without prehospital cooling, accomplished by infusing up to 2 L of 4°C normal saline as soon as possible following return of spontaneous circulation. Adults in King County, Washington, with prehospital cardiac arrest and resuscitated by paramedics were eligible and 1359 patients (583 with VF and 776 without VF) were randomized between December 15, 2007, and December 7, 2012. Patient follow-up was completed by May 1, 2013. Nearly all of the patients resuscitated from VF and admitted to the hospital received hospital cooling regardless of their randomization.

    Main Outcomes and Measures The primary outcomes were survival to hospital discharge and neurological status at discharge.

    Results The intervention decreased mean core temperature by 1.20°C (95% CI, −1.33°C to −1.07°C) in patients with VF and by 1.30°C (95% CI, −1.40°C to −1.20°C) in patients without VF by hospital arrival and reduced the time to achieve a temperature of less than 34°C by about 1 hour compared with the control group. However, survival to hospital discharge was similar among the intervention and control groups among patients with VF (62.7% [95% CI, 57.0%-68.0%] vs 64.3% [95% CI, 58.6%-69.5%], respectively; P = .69) and among patients without VF (19.2% [95% CI, 15.6%-23.4%] vs 16.3% [95% CI, 12.9%-20.4%], respectively; P = .30). The intervention was also not associated with improved neurological status of full recovery or mild impairment at discharge for either patients with VF (57.5% [95% CI, 51.8%-63.1%] of cases had full recovery or mild impairment vs 61.9% [95% CI, 56.2%-67.2%] of controls; P = .69) or those without VF (14.4% [95% CI, 11.3%-18.2%] of cases vs 13.4% [95% CI,10.4%-17.2%] of controls; P = .30). Overall, the intervention group experienced rearrest in the field more than the control group (26% [95% CI, 22%-29%] vs 21% [95% CI, 18%-24%], respectively; P = .008), as well as increased diuretic use and pulmonary edema on first chest x-ray, which resolved within 24 hours after admission.

    Conclusion and Relevance Although use of prehospital cooling reduced core temperature by hospital arrival and reduced the time to reach a temperature of 34°C, it did not improve survival or neurological status among patients resuscitated from prehospital VF or those without VF.

    Trial Registration clinicaltrials.gov Identifier: NCT00391469 Brain injury causes morbidity and mortality after resuscitation from cardiac arrest, and many patients never awaken.1- 4 Hypothermia is a promising treatment that can help brain recovery. In randomized trials of humans resuscitated from prehospital ventricular fibrillation (VF), mild hypothermia (32-34°C) for 12 to 24 hours improved neurological recovery and survival despite delays of 4 to 8 hours in achieving goal temperatures.5,6 Hospital-based induction of hypothermia is now recommended for patients who remain comatose after resuscitation from VF.7,8 The optimal timing for induction of hypothermia is uncertain. In animal models of cardiac arrest, the benefit of hypothermia declines when it is started more than 15 minutes after reperfusion.9 Bernard et al10,11 hypothesized that early initiation of cooling in the field after return of spontaneous circulation (ROSC) would improve both survival and neurological outcome. Rapid cooling after resuscitation from cardiac arrest with an intravenous infusion of cold saline appears feasible and safe.12 However, no benefit was observed among 234 patients resuscitated from prehospital VF and then randomized to early field cooling.13 The only randomized trial of prehospital hypothermia in patients resuscitated from cardiac arrest without VF (ie, first rhythm of asystole or pulseless electrical activity) lacked power to detect a difference in outcomes.14 Therefore, we evaluated whether early prehospital cooling improved survival to hospital discharge and neurological outcome in patients with a presenting arrest rhythm of VF or without VF. We also examined whether prehospital cooling was associated with adverse effects in the prehospital and hospital phases of care.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus