Amenable unitary representations of a locally compact group, $G$, are studied in terms of associated coefficient subspaces of the Fourier-Stieltjes algebra $B(G)$, and in terms of the existence of invariant and multiplicative states on associated von Neumann and $C^*$-algebras. We introduce Fourier algebras and reduced Fourier-Stieltjes algebras associated to arbitrary representations, and study amenable representations in relation to these algebras.
© 2001-2024 Fundación Dialnet · Todos los derechos reservados