Ayuda
Ir al contenido

Dialnet


A generalized Poincaré-Lelong formula

  • Autores: Mats Andersson
  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 101, Nº 2, 2007, págs. 195-218
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We prove a generalization of the classical Poincaré-Lelong formula. Given a holomorphic section $f$, with zero set $Z$, of a Hermitian vector bundle $E\to X$, let $S$ be the line bundle over $X\setminus Z$ spanned by $f$ and let $Q=E/S$. Then the Chern form $c(D_Q)$ is locally integrable and closed in $X$ and there is a current $W$ such that ${dd}^cW=c(D_E)-c(D_Q)-M,$ where $M$ is a current with support on $Z$. In particular, the top Bott-Chern class is represented by a current with support on $Z$. We discuss positivity of these currents, and we also reveal a close relation with principal value and residue currents of Cauchy-Fantappiè-Leray type.


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno