Ayuda
Ir al contenido

Dialnet


Lower bounds for the truncated Hilbert transform

  • Autores: Rima Alaifari, Lillian B. Pierce, Stefan Steinerberger
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 32, Nº 1, 2016, págs. 23-56
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given two intervals I,J⊂R, we ask whether it is possible to reconstruct a real-valued function f∈L2(I) from knowing its Hilbert transform Hf on J. When neither interval is fully contained in the other, this problem has a unique answer (the nullspace is trivial) but is severely ill-posed. We isolate the difficulty and show that by restricting ff to functions with controlled total variation, reconstruction becomes stable. In particular, for functions f∈H1(I), we show that ∥Hf∥L2(J)≥c1exp(−c2∥fx∥L2(I)∥f∥L2(I))∥f∥L2(I), for some constants c1,c2>0 depending only on I,J. This inequality is sharp, but we conjecture that ∥fx∥L2(I) can be replaced by ∥fx∥L1(I).


Fundación Dialnet

Dialnet Plus

  • Más información sobre Dialnet Plus

Opciones de compartir

Opciones de entorno